Skip to main content
Log in

Tachyphylaxis to the inhibitory effect of L-type channel blockers on ACh-induced [Ca2+]i oscillations in porcine tracheal myocytes

  • Published:
Journal of Biomedical Science

Summary

Discrepancies about the role of L-type voltage-gated calcium channels (VGCC) in acetylcholine (ACh)-induced [Ca2+]i oscillations in tracheal smooth muscle cells (TSMCs) have been seen in recent reports. We demonstrate here that ACh-induced [Ca2+]i oscillations in TMCS were reversibly inhibited by three VGCC blockers, nicardipine, nifedipine and verapamil. Prolonged (several minutes) application of VGCC blockers, led to tachyphylaxis; that is, [Ca2+]i oscillations resumed, but at a lower frequency. Brief (15–30 s) removal of VGCC blockers re-sensitized [Ca2+]i oscillations to inhibition by the agents. Calcium oscillations tolerant to VGCC blockers were abolished by KB-R7943, an inhibitor of the reverse mode of Na+/Ca2+ exchanger (NCX). KB-R7943 alone also abolished ACh-induced [Ca2+]i oscillations. Enhancement of the reverse mode of NCX via removing extracellular Na+ reversed inhibition of ACh-induced [Ca2+]i oscillations by VGCC blockers. Inhibition of non-selective cation channels using Gd3+ slightly reduced the frequency of ACh-induced [Ca2+]i oscillations, but did not prevent the occurrence of tachyphylaxis. Altogether, these results suggest that VGCC and the reverse mode of NCX are two primary Ca2+ entry pathways for maintaining ACh-induced [Ca2+]i oscillations in TSMCs. The two pathways complement each other, and may account for tachyphylaxis of ACh-induced [Ca2+]i oscillations to VGCC blockers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee C.H., Kuo K.H., Dai J., van Breemen C. (2005) Asynchronous calcium waves in smooth muscle cells. Can. J. Physiol. Pharmacol. 83(8–9):733–741

    Article  PubMed  CAS  Google Scholar 

  2. Malcuit C., Kurokawa M., Fissore R.A. (2006) Calcium oscillations and mammalian egg activation. J. Cell Physiol. 206(3): 565–573

    Article  PubMed  CAS  Google Scholar 

  3. Ikeda M. (2004) Calcium dynamics and circadian rhythms in suprachiasmatic nucleus neurons. Neuroscientist 10(4): 315–324

    Article  PubMed  CAS  Google Scholar 

  4. Halet G., Marangos P., Fitzharris G., Carroll J. (2003) Ca2+ oscillations at fertilization in mammals. Biochem. Soc. Trans. 31(Pt 5): 907–911

    Article  PubMed  CAS  Google Scholar 

  5. Guse A.H. (1998) Ca2+ signaling in T-lymphocytes. Crit. Rev. Immunol. 18(5):419–448

    PubMed  CAS  Google Scholar 

  6. Bergsten P., Lin J., Westerlund J. (1998). Pulsatile insulin release: role of cytoplasmic Ca2+ oscillations. Diabetes Metab. 24(1): 41–45

    PubMed  CAS  Google Scholar 

  7. Kuo K.H., Dai J., Seow C.Y., Lee C.H., van Breemen C. (2003) Relationship between asynchronous Ca2+ waves and force development in intact smooth muscle bundles of the porcine trachea. Am. J. Physiol. Lung Cell. Mol. Physiol. 285(6): L1345–L1353

    PubMed  CAS  Google Scholar 

  8. Shuttleworth T.J. (1999) What drives calcium entry during [Ca2+]i oscillations? – challenging the capacitative model. Cell Calcium 25(3): 237–246

    Article  PubMed  CAS  Google Scholar 

  9. Lee C.H., Poburko D., Kuo K.H., Seow C. and van Breemen C. Relationship between the sarcoplasmic reticulum and the plasma membrane. Novartis Found. Symp. 246: 26–41; discussion 41–7, 48–51, 2002.

    Google Scholar 

  10. Janssen L.J., Wattie J., Lu-Chao H., Tazzeo T. (2001) Muscarinic excitation–contraction coupling mechanisms in tracheal and bronchial smooth muscles. J. Appl. Physiol. 91(3): 1142–1151

    PubMed  CAS  Google Scholar 

  11. Farley J.M., Miles P.R. (1978) The sources of calcium for acetylcholine-induced contractions of dog tracheal smooth muscle. J. Pharmacol. Exp. Ther. 207(2):340–346

    PubMed  CAS  Google Scholar 

  12. Shieh C.C., Petrini M.F., Dwyer T.M., Farley J.M. (1995) Calcium mobilization and muscle contraction induced by acetylcholine in swine Trachealis. J. Biomed. Sci. 2(3): 272–282

    Article  PubMed  CAS  Google Scholar 

  13. Prakash Y.S., Kannan M.S., Sieck G.C. (1997) Regulation of intracellular calcium oscillations in porcine tracheal smooth muscle cells. Am. J. Physiol. 272(3 Pt 1): C966–C975

    PubMed  CAS  Google Scholar 

  14. Dai J.M., Kuo K.H., Leo J.M., van Breemen C., Lee C.H. (2006) Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle. Am. J. Physiol. Lung Cell. Mol. Physiol. 290(3): L459–L469

    Article  PubMed  CAS  Google Scholar 

  15. Julou G., Freslon J.L. (1986) Effects of calcium entry blockers on Ca2+-induced contraction of depolarized and noradrenaline-exposed rat resistance vessels. Eur. J. Pharmacol. 129(3): 261–270

    Article  PubMed  CAS  Google Scholar 

  16. Birinyi P., Acsai K., Banyasz T., Toth A., Horvath B., Virag L., Szentandrassy N., Magyar J., Varro A., Fulop F., Nanasi P.P. (2005) Effects of SEA0400 and KB-R7943 on Na+/Ca2+ exchange current and L-type Ca2+ current in canine ventricular cardiomyocytes. Naunyn Schmiedebergs Arch. Pharmacol. 372(1): 63–70

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka H., Nishimaru K., Aikawa T., Hirayama W., Tanaka Y., Shigenobu K. 2002) Effect of SEA0400, a novel inhibitor of sodium–calcium exchanger, on myocardial ionic currents. Br. J. Pharmacol. 135(5): 1096–1100

    Article  PubMed  CAS  Google Scholar 

  18. Putney J.W. Jr. (2001) Pharmacology of capacitative calcium entry. Mol. Interv. 1(2): 84–94

    PubMed  CAS  Google Scholar 

  19. Bird G.S., Putney J.W. Jr. (2005) Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J. Physiol. 562(Pt 3): 697–706

    PubMed  CAS  Google Scholar 

  20. Arnon A., Hamlyn J.M., Blaustein M.P. (2000) Na+ entry via store-operated channels modulates Ca2+ signaling in arterial myocytes. Am. J. Physiol. Cell Physiol. 278(1): C163–C173

    PubMed  CAS  Google Scholar 

  21. Kohda M., Komori S., Unno T., Ohashi H. (1996) Carbachol-induced [Ca2+]i oscillations in single smooth muscle cells of guinea-pig ileum. J. Physiol. 492 ( Pt 2):315–328

    PubMed  CAS  Google Scholar 

  22. Lee C.H., Poburko D., Sahota P., Sandhu J., Ruehlmann D.O., van Breemen C. (2001) The mechanism of phenylephrine-mediated [Ca2+]i oscillations underlying tonic contraction in the rabbit inferior vena cava. J Physiol. 534(Pt 3): 641–650

    Article  PubMed  CAS  Google Scholar 

  23. Kajioka S., Nakayama S., Asano H., Brading A.F. (2005) Involvement of ryanodine receptors in muscarinic receptor-mediated membrane current oscillation in urinary bladder smooth muscle. Am. J. Physiol. Cell Physiol. 288(1): C100–C108

    PubMed  CAS  Google Scholar 

  24. Liu X., Farley J.M. (1996) Acetylcholine-induced Ca++-dependent chloride current oscillations are mediated by inositol 1,4,5-trisphosphate in tracheal myocytes. J. Pharmacol. Exp. Ther. 277(2): 796–804

    PubMed  CAS  Google Scholar 

  25. Chopra L.C., Twort C.H., Cameron I.R., Ward J.P. (1991) Inositol 1,4,5-trisphosphate- and guanosine 5′-O-(3-thiotriphosphate)-induced Ca2+ release in cultured airway smooth muscle. Br. J. Pharmacol. 104(4): 901–906

    PubMed  CAS  Google Scholar 

  26. Kannan M.S., Prakash Y.S., Brenner T., Mickelson J.R., Sieck G.C. (1997) Role of ryanodine receptor channels in Ca2+ oscillations of porcine tracheal smooth muscle. Am. J. Physiol. 272(4 Pt 1): L659–L664

    PubMed  CAS  Google Scholar 

  27. Iino M. (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in smooth muscle cells of the guinea pig taenia caeci. J. Gen. Physiol. 95: 1103–1122

    Article  PubMed  CAS  Google Scholar 

  28. Bezprozvanny I., Watras J., Ehrlich B.E. (1991) Bell-shaped calcium-response curve of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351: 751–754

    Article  PubMed  CAS  Google Scholar 

  29. Finch E.A., Turner T.J., Goldin S.M. (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252: 443–446

    Article  PubMed  CAS  Google Scholar 

  30. Bootman M.D., Missiaen L., Parys J.B., De Smedt H., Casteels R. (1995) Control of inositol 1,4,5-trisphosphate-induced Ca2+ release by cytosolic Ca2+. Biochem. J. 306: 445–451

    PubMed  CAS  Google Scholar 

  31. McCarron J.G., MacMillan D., Bradley K.N., Chalmers S., Muir T.C. (2004) Origin and mechanisms of Ca2+ waves in smooth muscle as revealed by localized photolysis of caged inositol 1,4,5-trisphosphate. J. Biol. Chem. 279(9): 8417–8427

    Article  PubMed  CAS  Google Scholar 

  32. Arnon A., Hamlyn J.M., Blaustein M.P. (2000) Ouabain augments Ca2+ transients in arterial smooth muscle without raising cytosolic Na(+). Am. J. Physiol. Heart Circ. Physiol. 279(2): H679–H691

    PubMed  CAS  Google Scholar 

  33. Paltauf-Doburzynska J., Frieden M., Spitaler M., Graier W.F.(2000). Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. J. Physiol. 524 Pt 3: 701–713

    Article  PubMed  CAS  Google Scholar 

  34. Lee C.H., Poburko D., Kuo K.H., Seow C.Y., van Breemen C. (2002) Ca2+ oscillations, gradients, and homeostasis in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 282(5):H1571–H1583

    PubMed  CAS  Google Scholar 

  35. Rosker C., Graziani A., Lukas M., Eder P., Zhu M.X., Romanin C., Groschner K. (2004) Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na2/Ca2+ exchanger. J. Biol. Chem. 279(14): 13696–13704

    Article  PubMed  CAS  Google Scholar 

  36. Zhang S., Yuan J.X., Barrett K.E., Dong H. (2005) Role of Na2/Ca2+ exchange in regulating cytosolic Ca2+ in cultured human pulmonary artery smooth muscle cells. Am. J. Physiol. Cell Physiol. 288(2): C245–C252

    Article  PubMed  CAS  Google Scholar 

  37. Hinata M., Yamamura H., Li L., Watanabe Y., Watano T., Imaizumi Y., Kimura J. (2002) Stoichiometry of Na2/Ca2+ exchange is 3:1 in guinea-pig ventricular myocytes. J. Physiol. 545(Pt 2): 453–461

    Article  PubMed  CAS  Google Scholar 

  38. Blaustein M.P.. (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am. J. Physiol. Cell Physiol. 264: C1367–C1387

    CAS  Google Scholar 

  39. Blaustein M.P., Lederer W.J. (1999) Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79: 763–854

    PubMed  CAS  Google Scholar 

  40. Putney J.W. Jr.. (1990) Capacitative calcium entry revisited. Cell Calcium 11(10): 611–624

    Article  PubMed  CAS  Google Scholar 

  41. Parekh A.B., Putney J.W. Jr. (2005) Store-operated calcium channels. Physiol. Rev. 85 (2): 757–810

    Article  PubMed  CAS  Google Scholar 

  42. Piacentino 3rd V., Weber C.R., Gaughan J.P., Margulies K.B., Bers D.M., Houser S.R. (2002) Modulation of contractility in failing human myocytes by reverse-mode Na2/Ca2+ exchange. Ann. NY Acad. Sci. 976: 466–471

    Article  PubMed  CAS  Google Scholar 

  43. Philipson K.D., Nicoll D.A., Ottolia M., Quednau B.D., Reuter H., John S., Qiu Z. (2002) The Na2/Ca2+ exchange molecule: an overview. Ann. NY Acad. Sci. 976: 1–10

    Article  PubMed  CAS  Google Scholar 

  44. Farley J.M., Miles P.R. (1977) Role of depolarization in acetylcholine-induced contractions of dog trachealis muscle. J. Pharmacol. Exp. Ther. 201(1):199–205

    PubMed  CAS  Google Scholar 

  45. Kohda M., Komori S., Unno T., Ohashi H. (1998) Carbachol-induced oscillations in membrane potential and [Ca2+]i in guinea-pig ileal smooth muscle cells. J. Physiol. 511(Pt 2): 559–571

    Article  PubMed  CAS  Google Scholar 

  46. Choi J., Farley J.M. (1998) Effects of 8-bromo-cyclic GMP on membrane potential of single swine tracheal smooth muscle cells. J. Pharmacol. Exp. Ther. 285(2): 588–594

    PubMed  CAS  Google Scholar 

  47. Morgan A.J., Jacob R. (1998) Differential modulation of the phases of a Ca2+ spike by the store Ca2+-ATPase in human umbilical vein endothelial cells. J. Physiol. 513(Pt 1): 83–101

    Article  PubMed  CAS  Google Scholar 

  48. Wayman C.P., McFadzean I., Gibson A., Tucker J.F. (1997) Cellular mechanisms underlying carbachol-induced oscillations of calcium-dependent membrane current in smooth muscle cells from mouse anococcygeus. Br. J. Pharmacol. 121(7): 1301–1308

    Article  PubMed  CAS  Google Scholar 

  49. Kohda M., Komori S., Unno T., Ohashi H. (1996) Carbachol-induced [Ca2+]i oscillations in single smooth muscle cells of guinea-pig ileum. J. Physiol. 492(Pt 2):315–328

    PubMed  CAS  Google Scholar 

  50. Sneyd J., Tsaneva-Atanasova K., Yule D.I., Thompson J.L., Shuttleworth T.J. (2004) Control of calcium oscillations by membrane fluxes. Proc. Natl. Acad. Sci. USA 101(5): 1392–1396

    Article  PubMed  CAS  Google Scholar 

  51. Van Breemen C., Farinas B.R., Gerba P., McNaughton E.D. (1972) Excitation–contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ. Res. 30(1): 44–54

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry M. Farley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, WS., Farley, J.M. Tachyphylaxis to the inhibitory effect of L-type channel blockers on ACh-induced [Ca2+]i oscillations in porcine tracheal myocytes. J Biomed Sci 14, 129–143 (2007). https://doi.org/10.1007/s11373-006-9122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-006-9122-6

Keywords

Navigation